ESTEROITALIAMISTERONATURA TECNOLOGIA & SCIENZA

Secondo diversi fisici l’Universo potrebbe essere un gigantesco ologramma

Ci sono sempre più prove che l’universo sia un ologramma gigante

Secondo i migliori fisici del mondo, l’intero Universo potrebbe essere un gigantesco ologramma .Se un amico ti avesse detto che viviamo tutti in un ologramma gigante, probabilmente gli avresti risposto di cambiare spacciatore. Ma, incredibile a dirsi, i fisici di tutto il mondo stanno iniziando a pensare lo stesso: che quello che noi vediamo come un universo tridimensionale potrebbe essere l’immagine di un universo a due dimensioni proiettato lungo un enorme orizzonte cosmico.

Sì, è roba da pazzi. La natura tridimensionale del nostro mondo è il fondamento del nostro senso della realtà tanto quanto l’idea dello scorrere del tempo. E ora, alcuni ricercatori tendono a credere che le contraddizioni tra la teoria della relatività einsteiniana e la meccanica quantistica potrebbero essere conciliate se considerassimo ogni oggetto tridimensionale del nostro mondo come la proiezione di minuscoli byte subatomici contenuti in un mondo piatto.

Secondo diversi fisici l’Universo potrebbe essere un gigantesco ologrammaAlla Ricerca delle prove che l’universo sia un ologramma gigante“Se fosse vero, sarebbe un tassello davvero importante nella nostra conoscenza della realtà,” mi ha detto al telefono Daniel Grumiller, un fisico dell’Università Tecnologica di Vienna. Grumiller, insieme ai colleghi Max Riegler, Arjun Bagchi e Rudranil Basu ha pubblicato recentemente il primo studio in assoluto che offre delle prove concrete che il cosiddetto principio olografico—secondo il quale certi spazi a tre dimensioni possono essere matematicamente ridotti a proiezioni bidimensionali—possa descrivere il nostro universo.“Se vent’anni fa avessi chiesto a qualunque fisico quante fossero le dimensioni del mondo, ti avrebbe risposto ‘tre dimensioni spaziali più il tempo,’” ha aggiunto. “Il principio olografico è stato postulato per la prima volta più di 20 anni fa come una possibile soluzione al famoso paradosso dell’informazione del buco nero di Stephen Hawking.” (Il quale sostiene, essenzialmente, che i buchi neri sembrano inghiottire informazioni, cosa impossibile secondo la teoria dei quanti.)

Ma se il principio non è mai stato formalizzato matematicamente per i buchi neri, il fisico teorico Juan Maldacena ha dimostrato diversi anni fa che l’ipotesi olografica reggeva per un tipo di spazio teoretico chiamato spazio anti de Sitter. A differenza dello spazio del nostro universo, che su scala cosmica è relativamente piatto, lo spazio anti de Sitter ha una curvatura interna che ricorda una sella.Per dimostrare che è effettivamente possibile vedere il nostro universo come un ologramma, è necessario calcolare le grandezze fisiche usando sia la teoria quantistica dei campi che quella della gravità in uno spazio “piatto,” e ottenere risultati corrispondenti. Grumiller ha deciso di provare a replicare una qualità fondamentale della meccanica quantistica—l’entanglement quantistico—usando la teoria della gravità.Quando due particelle quantistiche sono legate dall’entanglement, non possono essere descritte individualmente, ma formano un solo “oggetto” quantistico, pur essendo distanti tra loro. Esiste un modo per quantificare l’entanglement di un sistema quantistico, conosciuto come “entropia dell’entanglement.” Dopo molti anni di ricerche, Grumiller e i suoi colleghi sono riusciti a dimostrare che questa entropia ha esattamente lo stesso valore se calcolata sia con la teoria gravitazionale che con la teoria quantistica dei campi, per quanto riguarda spazi simili al nostro universo.“Questo calcolo conferma le nostre supposizioni sul fatto che il principio dell’ologramma possa realizzarsi anche in spazi piatti,” ha detto Riegler in un comunicato stampa. “Prova la validità del principio di corrispondenza nel nostro universo.”

“Questo calcolo conferma le nostre supposizioni sul fatto che il principio dell’ologramma possa realizzarsi anche in spazi piatti,” ha detto Riegler in un comunicato stampa. “Prova la validità del principio di corrispondenza nel nostro universo.”

Lo scienziato del Fermilab Aaron Chou (a sinistra), e la studentessa della Vanderbilt University Brittany Kamai controllano lo Holometer usato per testare l’ipotesi che l’universo sia un ologramma in 2D.
Se il principio olografico si applica davvero al nostro universo, potrebbe forse aiutarci a risolvere le varie incongruenze tra la teoria della relatività e quella quantistica, incluso il paradosso dell’informazione del buco nero.

Offrirebbe inoltre ai ricercatori un modo per rispondere a quesiti quantistici davvero complessi usando equazioni gravitazionali relativamente semplici. Ma prima di poter dire con certezza che viviamo dentro Matrix, c’è ancora un bel po’ di lavoro da fare.

“Abbiamo fatto questi calcoli usando la teoria gravitazionale a tre dimensioni e la teoria quantistica dei campi a due dimensioni, ma l’universo si sviluppa in tre dimensioni, più il tempo,” ha detto Grumiller. “Il passo successivo sarà generalizzare queste considerazioni per includere una dimensione in più. Ci sono molte altre grandezze che dovrebbero coincidere tra le due teorie, ed è anche su questo che stiamo lavorando ora.”

Aldilà delle considerazioni teoretiche, c’è la faccenda completamente diversa dell’abbattere l’illusione e osservare mediante esperimenti la natura olografica della realtà. I fisici al Fermilab del Department of Energy stanno provando a fare proprio questo.

il Direttore del Fermilab Center for Particle Astrophysics Craig Hogan ha recentemente ipotizzato che il nostro mondo macroscopico sia come uno “schermo video a quattro dimensioni” creato da pezzetti simili a pixel di informazioni subatomiche trillioni e trillioni di volte più piccoli degli atomi. Ai nostri macroscopici occhi, qualsiasi cosa sembra a tre dimensioni. Ma esattamente come avvicinare la faccia allo schermo fa sì che i pixel diventino visibili, se scrutiamo abbastanza a fondo nella materia a livello subatomico, la bitmap del nostro universo olografico potrebbe rivelarsi.

A questo punto. Se questa definizione di spazio è corretta, allora, come per qualsiasi computer, la capacità di contenere e processare dati dell’universo è limitata. Inoltre, questo limite si porterebbe dietro segnali rivelatori—il cosiddetto “rumore olografico”—che possiamo misurare.Come ha spiegato Hogan a Jason Koebler di Motherboard, se davvero viviamo in un ologramma, “l’effetto primo è che la realtà ha un numero di informazioni limitato, come un film su Netflix quando la Comcast non ti da abbastanza banda. È tutto un po’ sfocato e a scatti. Niente resta fermo, mai, si muove sempre un pochino.”

Il rumore della banda della realtà, si può dire, è esattamente ciò che sta cercando di misurare il laboratorio di Hogan, usando uno strumento chiamato Holometer, che è fondamentalmente un puntatore laser molto grande e potente.“Stiamo cercando di stabilire se ci sia un limite alla precisione con cui possiamo misurare le posizioni relative di grandi oggetti,” mi ha scritto in una mail Robert Lanza, ricercatore postdoc. “Rappresenterebbe un limite nelle informazioni effettive immagazzinate dall’universo.”

L’esperimento che decifrerà questa cosa prevede la misurazione delle posizioni relative di grandi specchi lontani 40 metri, tramite l’uso di due interferometri laser Michaelson, con una precisione 1 miliardo di volte più piccola di un atomo. Se, come sostiene l’ipotesi del rumore olografico, le informazioni sulle posizioni dei due specchi sono finite, allora i ricercatori dovrebbero raggiungere un limite oltre il quale non dovrebbero essere in grado di risolvere ulteriormente le posizioni reciproche.“E poi cosa succede?” mi ha detto Lanza. “Ci aspettiamo di cogliere semplicemente rumore, come se le posizioni delle ottiche danzassero in giro, senza riuscire a fissarsi con maggiore precisione. Alla fine, il segno che cerchiamo è un fondo di rumore irriducibile dato dal fatto che l’universo non può immagazzinare altre informazioni sulle posizioni degli specchi.”